Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract This study explores the Antarctic sea ice concentration (SIC) response to multiyear (MY) and single-year (SY) El Niños using a 2200-yr CESM1 preindustrial simulation. During the first austral winter, MY El Niño weakens the amplitude of the typical SIC anomaly pattern induced by SY El Niño but maintains the same impact pattern. During the second winter, MY El Niños not only intensify the amplitude but also shift the typical impact pattern of SY El Niños eastward. The amplitude variation effect on SIC is caused by an Indian Ocean memory mechanism, while the zonal shifting effect on SIC pattern is caused by an Atlantic Ocean memory mechanism. These mechanisms result from the different responses of the two oceans to different locations and intensities between SY and MY El Niños. Observed MY El Niños during 1979–2020 confirm the distinct impacts during the second austral winter revealed by the CESM1 simulation. These results demonstrate that SIC in the Ross and Amundsen–Bellingshausen–Weddell Seas is sensitive to the SY or MY types of El Niño.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract. Carbonyl sulfide (COS) is the most abundant sulfur gas in the atmosphere with links to terrestrial and oceanic productivity. We measured COS in ice core air from an intermediate-depth ice core from the South Pole using both dry and wet extraction methods, recovering a 52 500-year record. We find evidence for COS production in the firn, altering the atmospheric signal preserved in the ice core. Mean sea salt aerosol concentrations from the same depth are a good proxy for the COS production, which disproportionately impacts the measurements from glacial period ice with high sea salt aerosol concentrations. The COS measurements are corrected using sea salt sodium (ssNa) as a proxy for the excess COS resulting from the production. The ssNa-corrected COS record displays substantially less COS in the glacial period atmosphere than the Holocene and a 2 to 4-fold COS rise during the deglaciation synchronous with the associated climate signal. The deglacial COS rise was primarily source driven. Oceanic emissions in the form of COS, carbon disulfide (CS2), and dimethylsulfide (DMS) are collectively the largest natural source of atmospheric COS. A large increase in ocean COS emissions during the deglaciation suggests enhancements in emissions of ocean sulfur gases via processes that involve ocean productivity, although we cannot quantify individual contributions from each gas.more » « less
- 
            The atmospheric history of molecular hydrogen (H 2 ) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H 2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H 2 mol −1 air) during the mid to late 1800s. Over the twentieth century, H 2 levels rose by about 70% to 550 ppb. The reconstruction shows good agreement with the H 2 atmospheric history based on firn air measurements from the South Pole. The broad trends in atmospheric H 2 over the twentieth century can be explained by increased methane oxidation and anthropogenic emissions. The H 2 rise shows no evidence of deceleration during the last quarter of the twentieth century despite an expected reduction in automotive emissions following more stringent regulations. During the late twentieth century, atmospheric CO levels decreased due to a reduction in automotive emissions. It is surprising that atmospheric H 2 did not respond similarly as automotive exhaust is thought to be the dominant source of anthropogenic H 2. The monotonic late twentieth century rise in H 2 levels is consistent with late twentieth-century flask air measurements from high southern latitudes. An additional unknown source of H 2 is needed to explain twentieth-century trends in atmospheric H 2 and to resolve the discrepancy between bottom-up and top-down estimates of the anthropogenic source term. The firn air–based atmospheric history of H 2 provides a baseline from which to assess human impact on the H 2 cycle over the last 150 y and validate models that will be used to project future trends in atmospheric composition as H 2 becomes a more common energy source.more » « less
- 
            Abstract Reconstructions of paleoatmospheric H2using polar firn air and ice cores would lead to a better understanding of the H2biogeochemical cycle and how it is influenced by climate change and human activity. In this study, the permeability, diffusivity, and solubility of H2are determined experimentally in ice Ih at temperatures relevant to polar ice sheets (199–253 K). The experimental data are used in conjunction with simplified diffusion models to assess the implications for: (a) Diffusion of H2from pressurized closed bubbles to open pores in polar firn, (b) diffusive smoothing of H2gradients in the ice sheet, and (c) post‐coring diffusive losses of H2from ice core samples. The results indicate that diffusive equilibrium between open and closed pores is likely achieved in the firn lock‐in zone. Diffusive smoothing of atmospheric variations is significant and should be accounted for in atmospheric reconstructions on millennial time scales. Diffusive losses from a bubbly ice sample are sufficiently slow that samples may be meaningfully analyzed for H2after storage on the order of a year. These results suggest that the mobility of H2in ice should not preclude the reconstruction of paleoatmospheric H2from firn air and ice cores.more » « less
- 
            Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000–1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600–1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate.more » « less
- 
            Abstract Biomass burning is an important component of the Earth system in terms of global biogeochemistry, atmospheric composition, climate, terrestrial ecology, and land use. This study examines published ice core trace gas measurements of acetylene, ethane, and methane, which have been used as proxies for paleofire emissions. We investigate the consistency of these records for the past 1,000 years in terms of (1) temporal trends in global fire emissions and (2) quantitative estimates for changes in global burning (dry matter burned per year). Three‐dimensional transport and box models were used to construct emissions scenarios for the trace gases consistent with each ice core record. Burning histories were inferred from trace gas emissions by accounting for biome‐specific emission factors for each trace gas. The temporal trends in fire inferred from the trace gases are in reasonable agreement, with a large decline in biomass burning emissions from the Medieval Period (MP: 1000–1500 CE) to the Little Ice Age (LIA: 1650–1750 CE). However, the three trace gas ice core records do not yield a consistent fire history, even assuming dramatic (and unrealistic) changes in the spatial distribution of fire and biomes. Substantial changes in other factors such as meteorological transport or atmospheric photochemical lifetimes appear to be required to reconcile the trace gas records.more » « less
- 
            Abstract. For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO2 during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important one. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
